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A Hilbert Space Realization of Nonlinear Quantum
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This paper studies the state-effect-probability structure associated with the
quantum mechanics of nonlinear (homogeneous, in general nonadditive) operators
on a Hilbert space. Its aim is twofold: to provide a concrete representation of
the features of nonlinear quantum mechanics on a Hilbert space, and to show
that the properties of the nonlinear version of quantum mechanics here described
have the structure of a classical logic.

This paper discusses the concrete structure of nonlinear (homogeneous,
in general nonadditive) operators on a Hilbert space as a possible nonlinear
version of standard quantum mechanics. The role of nonlinear structures has
been the subject of considerable discussion for some years. As well as the
work of Beltrametti and Bugajski [1–4] and Bugajski [5], there have also
been attempts to incorporate nonlinear operators in quantum mechanics by,
among others, Mielnik [12, 14, 15], Haag and Bannier [11], and Weinberg
[18, 17]. This paper describes a Hilbert space representation of such a nonlin-
ear theory and shows how the logic associated with the properties of this
representation is classical.

Section 1 provides a brief introduction to the standard state and effect
of quantum mechanics. Section 2 briefly recapitulates the concrete Hilbert
space structure normally identified as the standard linear quantum mechanics;
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Section 3 shows how the nonlinear homogeneous structure arises, and proves
that the logic of this structure is classical.

1. THE AXIOMATIC APPROACH TO UNSHARP QUANTUM
MECHANICS

1.1. The Structure of State–Question–Probability in Axiomatic
Quantum Mechanics

A structure of state-question-probability is a triple (S, Q, P), where:

1. S is a nonempty set, the elements of which are called states. In
state x P S, both individual samples and ensembles of identical
noninteracting physical systems are prepared under well-defined
and repeatable conditions by a macroscopic apparatus.

2. Q is a nonempty set, the elements of which are called questions.
Question q P Q is tested by a dichotomic measuring macroscopic
device which produces a certain definite macroscopic alternative
when interacting with a single sample of the physical entity. The
occurrence of the alternative is taken as the answer “yes” and its
absence as the answer “no.”

3. P: S 3 Q → [0, 1] is a function, called the probability function.
The value P(x, q) represents the probability of the question q
occurring relative to the state x.

Every question q P Q determines the following subsets of S:

• The certainly-yes domain of q: S1 (q) :5 {x P S: P(x, q) 5 1}.
• The certainly-no domain of q: S0(q) :5 {x P S: P(x, q) 5 0}.

The triple will satisfy the following axioms:

Axiom 1. The principle of indistinguishability of states: two states x1,
x2 are identical iff they produce the same statistical distribution. Formally,

If for every q P Q, P(x1, q) 5 P(x2, q), then x1 5 x2.

Axiom 2. The existence of the certain and impossible questions:

∃I P Q: ∀x P S, P(x, I) 5 1

and ∃O P Q: ∀x P S, P (x, O) 5 0

Axiom 3. The existence of the inverse question of every question:

∀q P Q, ∃q8 P Q: ∀x P S, P(x, q) 1 P(x, q8) 5 1

Axiom 4. The existence of the partial sum operation defined for every
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pair of mutually orthogonal questions. Let p, q be two questions; then the
orthogonality condition ∀x P S, P(x, p) 1 P(x, q) # 1 implies that

∃p % q P Q: ∀x P S, P(x, p % q) 5 P(x, p) 1 P(x, q)

Axiom 5. The existence of the convex product operation:

∀q P Q, ∀l P [0, 1], ∃(l ? q) P Q: ∀x P S, P(x, l ? q) 5 lP(x, q)

Axiom 6. The existence of the necessary question of every question:
∀q P Q, ∃qn P Q:

1. S1(qn) 5 S1(q)
2. if p P Q satisfies S1( p) 5 S1(q), then ∀x P S, P(x, qn) # P(x, p).
3. if r P Q satisfies S0(r) 5 S0(qn), then ∀x P S, P(x, r) # P(x, qn).

Assuming these axioms, the binary relation on Q defined as

p d q ⇔def ∀x P S, P( p, x) # P(q, x) (1.1)

is a partial quasiorder relation, i.e., the following hold:

(qo-1) ∀q P Q, q d q [reflexivity]

(qo-2) ∀p, q, r P Q, p d q, and q d r imply p d r [transitivity]

(o-3) ∀q P Q, O d q d I

Note that from these axioms it does not follow that the relation d is also
antisymmetric.

1.2. The Structure of State–Effect–Probability

The relation (1.1) is also called the physical quasiorder relation. We
recall that the condition ∀x P S, P(x, p) 5 P(x,q) [i.e., p d q and q d p]
does not imply the equality of the two questions: p 5 q. Thus, it is possible
to introduce the following equivalence relation of physical indistinguishability
of questions:

p [ s q ⇔def ∀x P S, P(x, p) 5 P(x, q) (1.2)

For every question q P Q, let [q] :5 {p P Q: p [s q} be the equivalence
class generated by q, modulo [s. Clearly [O] 5 {q0 P Q: ∀x P S, P(x, q0) 5
0} and [I] 5 {q1 P Q: ∀x P S, P(x, q1) 5 1}. In the sequel, for the sake
of simplicity, we will denote by O and I the equivalence classes [O] and [I],
respectively. The elements of the quotient set ^ :5 Q \ [s will be called effects.

Having fixed an effect f P ^(*), we can associate with it the following
subsets of S:
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• The certainly-yes domain of f : S1( f ) :5 {x P S: P(x, f ) 5 1}.
• The certainly-no domain of f : S0( f ) :5 {x P S: P(x, f ) 5 0}.

Making use of the equivalence relation (1.2), it is easy to prove, from
Axioms 1–6, that the following theorem holds:

Theorem 1.1. Let (S, Q, P) be a state–question–probability structure.
Defining the probability function S 3 ^ ° [0, 1], for simplicity also denoted
by P, for every x P S and every f P ^, by

P(x, f ) :5 P (x, qf), qf P f (1.3)

the induced state–effect–probability triple (S, ^, P) satisfies the following
conditions:

(SEP-1) The existence of the certain and the impossible effect:

∃I P ^ : ∀x P S, P (x, I) 5 1
and ∃O P ^: ∀x P S, P(x, O) 5 0

(SEP-2) The indistinguishability principle of states: ∀f P ^, P(x1, f )
5 P(x2, f ) ⇒ x1 5 x2.

(SEP-3) The indistinguishability principle of effects: ∀x P S, P (x, f1)
5 P(x, f2) ⇒ f1 5 f2.

(SEP-4) The existence of the inverse effect. For every effect f 5 [q]
P ^, we can introduce the inverse effect of f as the equivalence
class of questions f 8 :5 [q8] [which, owing to (qK-0), is well
defined] such that ∀x P S, P(x, f ) 1 P(x, f 8) 5 1.

(SEP-5) The partial sum operation for pairs of orthogonal effects.
For every pair of effects f, g P ^ satisfying the following
orthogonality condition ∀x P S, P(x, f ) 1 P(x, g) # 1, there
exists an effect, denoted by f % g and called the sum of f and
g, such that

∀x P S, P(x, f % g) 5 P(x, f ) 1 P(x, g)

(SEP-6) For every number l P [0, 1] and every effect f P ^, there
exists an effect, denoted by lf, such that for every x P 6,
P(x, lf ) 5 lP(x, f ).

(SEP-7) For every effect f P ^, an effect f n P ^ exists (the necessity
of f ) such that

(i) S1 ( f n) 5 S1 ( f );
(ii) If g P ^ satisfies S1(g) 5 S1( f ), then ∀x P S, P(x, f n)

# P(x, g).
(iii) If h P ^ satisfies S1(h) 5 S1 (( f n)8), then ∀x P S, P(x,
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( f n)8) # P(x, h).

The “orthodox” version of Axiom 5 in ref. 7 immediately follows from (SEP-
5) and (SEP-6):

Axiom 5-CGN. For every finite family of effects { f1, . . . , fn} # ^ and
every corresponding finite family of nonnegative real numbers {l1, . . . ,
ln} # R+ such that (n

j51 lj 5 1 , an effect (n
j51lj fj P ^ exists [the convex

combination of the fj with weights lj] such that

∀x P 6, P 1x, o
n

j51
lj fj2 5 o

n

j51
ljP(x, fj)

Thus any state-effect-probability structure has the convex property. In
particular, for any finite set of effects f1, f2, . . . , fn we denote by p fj the
product effect, i.e., the equiweighted convex combination (∀j, lj 5 1/n). The
product effect of two effects f and g will be denoted also by f ? g. Trivially,
for any convex combination with lj Þ 0, j 5 1, . . . , n, (and so for any
product) of effects we have

S1 1o
n

j51
lj fj2 5 ù

n

j51

S1( fj) and S0 1o
n

j51
lj fj2 5 ù

n

j51

S0( fj) (1.4)

As shown in ref. 9, the set of effects of an abstract triple satisfying (SEP-
1)–(SEP-7) forms a BZ effect algebra ^^, %, 8, ,, O, I& under the partial
sum operation (SEP-5), the Kleene complement (SEP-4), and the Brouwer
complement ∀f P ^, f , :5 f 8n defined by (SEP-7) and (SEP-4). The standard
partial order relation induced in every effect algebra f # g ⇔def ∃h P ^:
f % h 5 g coincides in this case with the physical partial order ∀x P S,
P(x, f ) # P(x, g).

Recall that, in particular, the Brouwer complementation satisfies the
weak double negation law: ∀f P ^, f # f,,. This makes it possible to single
out the set of B-sharp elements % :5 {a P ^: a 5 a,,} in which the two
complementations collapse in a unique standard orthocomplementation (∀a
P %, a8 5 a,) giving rise to the structure of sharp quantum logic (i.e., an
orthomodular lattice).

1.3. Propositions and Properties

We now introduce, in the state–effect–probability structure (S, ^, P),
the equivalence relation

f1 [p f2 ⇔def S1( f1) 5 S1( f2) ⇔ ( f1)n 5 ( f2)n (1.5)

Denote by [ f ](p) the equivalence class generated by the effect f P ^, and by
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%(p) 5 ^ \ [p the quotient set of effects with respect to this equivalence
relation. In particular, [I](p) 5 {I} and [O](p) 5 { f̂ P ^: ∀x P S, P(x, f̂ ) Þ
1}. Following Piron [16], the elements of %(p) will be called potentially
measurable propositions of the system. From (1.5) we have that the following
one-to-one correspondence identifying propositions and events:

[ f ](p) P %(p) } % { f n (1.6)

With every proposition a P %(p) we can associate the certainly-yes
domain S1(a) defined as S1( f ) for f P a. It is not possible, on the other hand,
to associate a unique certainly-no domain with propositions. Property (SEP-
7) of Theorem 1.1 can be restated in the following way:

(SEP-7p). For every proposition a P %(p), there exists an event (B-sharp
effect) a P % such that:
1. S1(a) 5 S1(a).
2. ∀g P a, a # g.
3. ∀h P [a8](p), a8 # h.

Note that 1 and 2 imply that the event a associated with proposition a
will be unique. Furthermore, condition 3 ensures that a is the event associated
with the proposition [a](p) with certainly-yes domain S1(a) if and only if a8
is the event associated with the proposition [a8](p) with certainly-yes
domain S0(a).

In general, many properties of the physical entity described by a state–
effect–probability structure are associated with every proposition a; we can
say that any effect f P a “tests” all the properties associated with proposition
a. The event f n P % belongs to proposition [ f ](p), and so it reveals those
samples of the physical entity which possess all the properties associated
with [ f ](p). It is the most selective among all the measurements available in
[ f ](p) (i.e., f̂ P [f ](p) implies f n # f̂ ); other elements of [ f ](p) can be considered
to be fuzzy representations of this proposition. Furthermore, it does not reveal,
as much as possible, the ones which do not possess these properties, i.e., f n

has the greatest certainly-no domain with respect to all the other effects in
the same proposition:

ø{S0( f ): f P [ f ](p)} 5 S0( f n)

and so “it minimizes the randomness of the ‘no’ answers” [13].
Note that, if we introduce on ^ the equivalence relation defined by

f2 [n f2 ⇔def S0( f1) 5 S0( f2) ⇔ ( f1), 5 ( f2), (1.7)

we can denote by [ f ](n) the equivalence class generated by f and by %(n) the
quotient set ^ \ [n. Elements ã P %(n) are called ‘nopositions’, and from
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(1.7) the following one-to-one correspondence identifying nopositions and
events holds:

[ f ](n) P %(n) } % { f , (1.8)

Then it is easy to prove the following proposition [10]:

Proposition 1.1. a is an event corresponding to the proposition [a](p)

with certainly-yes domain S1(a) if and only if a is a nonevent corresponding
to the noposition [a](n) with certainly-no domain S0(a).

This proposition guarantees that the set of propositions and the set
of nopositions coincide: %(p) 5 %(n); moreover, owing to the one-to-one
correspondences (1.6) and (1.8), this set can be identified with the set % of
all events.

2. UNSHARP LINEAR QUANTUM MECHANICS IN HILBERT
SPACES

2.1. States, Effects, and Probability in Linear Quantum Mechanics
on Hilbert Spaces

Let * be a complex, separable Hilbert space and let *8 :5 * \{0}. We
denote by S(*) the set of one-dimensional subspaces of * except the zero
vector, and by x, y, . . . elements of S(*). We denote by FL(*) the set of
linear effects operators (linear, bounded, self-adjoint, positive, and
absorbing operators):

FL(*) :5 {F P +(*): F 5 F*, ∀c P *, 0 # ^c.Fc& # |c|2}

The triple of states–effects–probability based on the Hilbert space *
and satisfying conditions (SEP-1)–(SEP-6) of Theorem 1.1 [9] is given by
(S(*), FL(*), P), where for any state x P 6(*) and any linear effect F P
FL(*), the probability function is defined by

P(x, F ) :5
^cx.Fcx&

|cx|
2 , cx P x (2.1)

and is independent of the representative nonzero vector cx chosen in x.
In particular:

1. The certain effect is the identity operator I: * . *, c → I(c) :5 c.
2. The impossible effect is the null operator O: * . *, c → O(c) :5 0.
3. For each F P FL(*), the corresponding inverse effect is F 8 :5 I 2

F P FL(*).
4. Let F, G, P FL(*) be linear effects on *. Then, the orthogonality
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condition ∀c P *: ^c.Fc& 1 ^c.Gc& # 1 implies that the algebraic
sum of operators F 1 G (the partial sum operation F % G :5 F 1
G P FL(*), defined for pairs of mutually orthogonal linear effects)
is also an effect, too.

Recall that, for any pair of linear effects F1, F2 P FL(*), the physical
indistinguishability relation coincides with the identity relation on operators:

∀x P 6(*), P(x, F1) 5 P(x, F2) ⇔ F1 5 F2 (2.2)

Moreover, in the present case the physical partial order relation on linear
effects assumes, for arbitrary F1, F2 P FL(*), the form

F1 # F2 ⇔ ∀c P *, ^c.F1c& # ^c.F2c& (2.3)

With every linear effect F P FL(*) we can associate its certainly-yes
domain 61(F ) 5 {x P 6(*): P(x, F ) 5 1}, which can be identified with
the corresponding certainly-yes subspace:

M1(F ) :5 {cx P *8: x P 61(F )} ø {0} 5 ker(I 2 F ) (2.4)

and its certainly-no domain 60(F ) 5 {x P 6(*): P(x, F ) 5 0}, which can
be identified with the corresponding certainly-no subspace:

M0(F ) :5 {cx P *8: x P 60(F )} ø {0} 5 ker(F ) (2.5)

The equivalence relation over the set of linear effects which defines properties
on this Hilbert space framework is now

F1 [p F2 ⇔ ker(I 2 F1) 5 ker(I 2 F2) (2.6)

Each [p equivalence class [F ](p) corresponds to a linear proposition
and contains a ‘representative’ sharp element which in the present linear case
is the linear projection PM1(F) onto the certainly-yes subspace M1(F ) generated,
according to (2.4), by the common certainly-yes domain 61(F ). That is, the
following theorem is easily proved.

Theorem 2.1. For each linear proposition [F ](p) P %(p)(*) the linear
event (B-sharp effect) PM1(F) satisfies condition (SEP-7p):

1. It is the B-sharp linear effect measuring the proposition since
PM1(F) P [F ](p).

2. Every other linear effect operator G P [F ](p) is a fuzzy (unsharp)
representation of the proposition [F ](p) since PM1(F) # G.

3. For every linear effect operator F̂ P [PM1(F)'](p) we have that
PM1(F)' # F̂.

The set P(*) of all linear projectors for * is the set of all exact (B-sharp)
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linear events and is an orthocomplemented orthomodular (not Boolean) lattice,
i.e., a quantum logic, identified with the set of all linear propositions:

[F ](p) P %(p)(*) } P(*) { PM1(F) (2.7)

Note that every P P P(*) is then linear, bounded, self-adjoint, and
idempotent.

Example 2.1. Consider the Hilbert space C2. The linear operator

FNM :5 11 0
0 1/22 (2.8)

is a linear effect operator such that

^(cr , cv).FNM(cr , cv)& 5 .cr.2 1
1
2

.cv.2 (2.9)

The certainly-yes subspace of (2.8) is C2
r 5 {(cr , cv) P C2: cv 5 0},

whereas the certainly-no subspace consists of the single zero vector. The
necessity of this linear effect is then the linear projection

(FNM)v :5 11 0
0 02 5 PC

2
r (2.10)

and so

^(cr , cv).(FNM)v (cr , cv)& 5 .cr.2 (2.11)

The proposition generated by FNM contains, for instance, the linear effects
of the form

Fk :5 11 0
0 j/k2 (2.12)

with j, k any real numbers .1 such that k . j.

3. UNSHARP NONLINEAR QUANTUM MECHANICS IN
HILBERT SPACES

3.1. From Linear to Nonlinear Quantum Mechanics on Hilbert Spaces

Let * be a (complex, separable) Hilbert space; the nonlinear approach
consists of the extension of the class of linear effect operators FL(*) to a larger
class Q(*) of not-necessarily linear operators: in general, for an operator F:
* . * of this class the additivity condition ∀w, c P *, F(w 1 c) 5 F(w) 1
F(c) is not required to hold.
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Let F: * → * be a homogeneous operator [i.e., such that ∀a P C,
∀c P *: F(ac) 5 aF(c)]. Consider the set N(*) of homogeneous operators
which are bounded, i.e., sup{|Fc|: |c| 5 1} , 1`. The mapping | ? |: N(*)
. R+, F → |F| :5 sup{|Fc|: |c| 5 1} is a norm on N(*), namely:

1. |F| 5 0 ⇔ F 5 O.
2. ∀l P C, |lF| 5 .l. ? |F|.
3. |F1 1 F2| # |F1| 1 |F2|.

It is immediately verified that each F P H(*) is continuous at zero, but in
general not on the whole of *. Furthermore, if F is not linear, the adjoint
F* defined over all of * in general does not exist.

Example 3.1. Let {un} be an orthonormal basis in *. The operator F:
* → * defined by

Fc :5 H2au2 if c 5 au1, a P C

c if c Þ au1, a P C

is homogeneous, nonadditive [F(u1 1 u2) 5 u1 1 u2, F(u1) 5 2u2, F(u2) 5
u2], and such that ∀c P *, O # ^c.Fc& # |c|2, but |F| 5 2. Moreover,
^Fu2.u1& 5 0 and ^u2.Fu1& 5 2, i.e., ^Fu2.u1& Þ ^u2.Fu1& [this operator is
not self-adjoint], whereas ∀c P *, ^c.Fc& 5 ^Fc.c&, i.e., it is diagonally
self-adjoint.

We denote by Q(*) the set of homogeneous operators F P N(*) which
are bounded by the identity operator I, diagonally self-adjoint, positive, and
absorbing. Namely, F P Q(*) if and only if :

1. ∀a P C, ∀c P *: F(ac) 5 aF(c).
2. |F| # |I| 5 1.
3. ∀c P *, ^Fc.c& 5 ^c.Fc& [which implies ∀c P *, ^c.Fc& P R].
4. ∀c P *, O # ^c.Fc& # |c|2.

In the following, elements from Q(*) will be called homogeneous (sometimes
also effect) operators. The probability (2.1) defined above can be extended
to the new class of homogeneous operators as a well-defined quantity in the
real unit interval, which is independent of the representative nonzero vector
cx in the ray x. But in this homogeneous case, the identity condition (2.2)
in general does not hold.

Example 3.2. The operator F: C3 → C3 defined as

F(z1, z2, z3) :5 H(0, 0, 0) if z3 5 0
(z1z2/z3, 2 z1z2/z3, 0) if z3 Þ 0

is a homogeneous effect operator such that F Þ O, but ^c.Fc& 5 0 for all
c P C3.
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As described in Section 1.2, in this homogeneous extension it is meaning-
ful to introduce the equivalence relation of physical indistinguishability:

F1 [S F2 ⇔def ∀x P 6(*), P(x, F1) 5 P(x, F2) (3.1a)

⇔ ∀c P *, ^c.F1c& 5 ^c.F2c& (3.1b)

Each [S equivalence class defines an effect and we denote by ^(*)
the collection of all such effects f 5 [F ]S , where [F ]S is as usual the equiva-
lence class of physically indistinguishable effect operators picked out by the
homogeneous effect operator F.

The following result is quite trivial.

Proposition 3.1. Let f P ^(*) be an effect. If there exists a linear effect
operator Fl P f, then this operator is unique:

∀Fl , Gl P FL(*), Fl , Gl P f ⇒ Fl 5 Gl (3.2)

We can then divide all effects into two classes: the effects generated by
a (unique) linear effect operator, also called linear effects and whose collection
is denoted by ^L(*), and effects which are purely nonlinear. Of course, from
Proposition 3.1 we have that the set of all linear effects can be identified
with the set of all linear effect operators by the one-to-one correspondence
FL(*) } ^L(*), associating with every linear effect operator Fl P ^L(*)
the linear effect (equivalence class) [Fl]S.

Example 3.3. Taking into account the linear effect operator (2.8) of
Example 2.1, the following homogeneous effect operator is physically indis-
tinguishable from it:

F̂NM (cr ,cv) 5 51cr 1
.cv.2

2.cr.2 cr , 02 if cr Þ 0

10, 1–2cv2 if cr 5 0
(3.3)

Indeed, for every (cr , cv) P C2 we have that ^(cr , cv).F̂NM (cr , cv)& is equal
to (2.9).

Example 3.4. Define on C2 the homogeneous effect operator

FGP (cr ,cv) :5 51cr 1
1
2

.cv.2

.cr.2 cr , 02 if cr Þ 0

(0, 0) if cr 5 0

(3.4)

This operator is idempotent and generates an effect which is purely nonlinear
(there is no linear effect operator physically indistinguishable from it).
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3.2. The Hilbert Homogeneous Model of the
State–Effect–Probability Structure

Define the map P: S(*) 3 ^(H ) → [0, 1] by

P(x, f ) :5
^cx.Ff cx&

|cx|
2 , cx P x, Ff P f

We have constructed a triple (S(*), ^(*), P) which satisfies the follow-
ing conditions:

(SEP-1) The certain effect (given by the equivalence class of the iden-
tity operator I: * → *) and the impossible effect (given
by the equivalence class of the null operator O: * → *)
both exist.

(SEP-2) The principle of indistinguishability of states is clearly satis-
fied: if x1 Þ x2, the nonlinear operator F defined by

Fc :5 5
c if c P x1

1–2 c if c P x2

0 if c ¸ x1 ø x2

is an effect operator and, denoting by fF the effect generated
by this effect operator, P(x1, fF) 5 1, P(x2, fF) 5 1/2.

(SEP-3) The principle of indistinguishability of effects is also satisfied:
in fact, if P(x, f1) 5 P(x, f2) for all x P S(*), then for every
F1 P f1 and every F2 P f2, ^c.F1c& 5 ^c.F2c& for all c P
*, that is, f1 5 f2 (as equivalence classes).

(SEP-4) The existence of the inverse is satisfied: for every F P Q(*)
set, as usual, F 8 :5 I 2 F; if F1 [S F2 [∀c P *, ^c.F1c& 5
^c.F2c&], then F81 [S F82 [∀c P *, ^c.(I 2 F1)c& 5 ^c.(I 2
F2)c&]. Thus for every effect f 5 [F ] the effect f 8 5 [F 8] is
well defined and independent of the representative operator
F̂ P f. Clearly, P(x, f ) 1 P(x, f 8) 5 1 for all x P S(*).

(SEP-5) The existence of the partial sum operation: if F1 [S F̂1 and
F2 [S F̂2 with ^c.F1 c& 1 ^c.F2c& # 1 for every c P *,
then ^c.(F1 1 F2)c& 5 ^c.(F̂1 1 F̂2)c& # 1, i.e., the sum
operation [F1]S 1 [F2]S :5 [F1 1 F2]S is well defined, and is
an effect.

(SEP-6) The existence of the convex product: if F [S G, then for
every l P [0, 1] we have that ^c.(lF )c& 5 ^c.(lG)c&, i.e.,
the product l[F ] :5 [lF ] is well defined.
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The partial order relation for ^(*) in the present homogeneous con-
text becomes

f1 # f2 ⇔ ∀c P *, ^c.F1 c& # ^c.F2c& where F1 P f1, f2 P f2

Having fixed an effect f P ^(*), we have:

• The certainly-yes domain of f, S1( f ) :5 {x P S(*): P(x, f ) 5 1},
can be identified with the subset of *: M1(F ) :5 {c P *: ^c.Fc&
5 ^c.c&}, independent of the representative F P f and sometimes
denoted also by M1( f ).

• The certainly-no domain of f, S0( f ) :5 {x P S(*): P(x, f ) 5 0},
can be identified with the subset of *: M0(F) :5 {c P *: ^c.Fc& 5
0}, independent of the representative F P f and sometimes denoted
also by M0( f ).

It is easy to establish the following characterization of certainly-yes
and -no domains:

M1(F ) 5 ø
GP[F]S

ker(G8) and M0(F ) 5 ø
GP[F]S

ker(G) (3.5)

where ker(G) :5 {c *: Gc 5 0} is not, in general, a subspace of *.
To prove the first equation in (3.5), note that obviously øGP[F]s ker(G8)

# M1(F ). On the other hand, given a c0 P M1(F ), let x0 be the one-dimensional
subspace generated by c0 and define the operator G0: * → *,

G0c :5 H c if c P x0

Fc if c ¸ x0

This operator is homogeneous with G0 P [F ]S and G0c0 5 c0, so that S1(F )
# øGP[F]s ker(G8). The second equation in (3.5) is proved in analogous
fashion.

In the standard Hilbert space structure of quantum mechanics, effects
are given by linear, self-adjoint, positive operators bounded by the identity
operator I, and the respective certainly-yes and -no domains are the subspaces
(2.4) and (2.5) of the Hilbert space *. In the present approach using homoge-
neous operators it is clear from (3.5) that the certainly-yes and -no domains
are given by set-theoretic unions of one-dimensional subspaces, which from
now on we will call starred subsets and whose collection will be denoted
by S(*).

In fact, if we take xc to be the one-dimensional subspace generated by
c P *, from (3.5) we have that
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M1(F ) 5 ø
GP[F]S

cPker(G8)

xc and M0(F ) 5 ø
GP[F]S

cPker(G)

xc (3.6)

Consider now the starred subset M P ((*), and define the operator
xM: * ° * in the following way:

∀c P *, xM(c) :5 Hc if c P M
O if c ¸ M

(3.7)

Because of the hypothesis that M P ((*), the map xM is clearly a homoge-
neous effect operator such that M1(xM) 5 M and M0(xM) 5 M c (the set-
theoretic complement * \M of M ).

We are now in a position to prove the following proposition:

Proposition 3.2. The homogeneous Hilbert model (S(*), ^(*), P) satis-
fies condition (SEP-7) and therefore is a state–effect–probability structure.
To be precise, for all F P Q(*), there exists an F n 5 xM1(F) P Q(*) (the
homogeneous necessity of F ) such that:

1. M1(F ) 5 M1(xM1(F)).
2. If G P ^(*) is such that M1(G) 5 M1(xM1(F)), then for every

c P *, ^c.xM1(F)c& # ^c.Gc&.
3. If H P ^(*) is such that M1(H ) 5 M1(x8M1(F)), then for every

c P *, ^c.x8M1(F)c& # ^c.Hc&.

Proof. (1) is obvious. As for (2), we need to show that ^c.xM1(F)c& #
^x.Gc& for all c P * if M1(G) 5 M1(F ). This is immediate both for c P
M1(F ) and for c ¸ M1(F ). We now show (3). Let

M1(H ) 5 M1(x8M1(F)) 5 M0(xM1(F)) 5 (M1(xM1(F)))c

Then, if c P xM1(F), it follows that x8M1(F)c 5 0. If, on the other hand, c P
(M1(xM1(F)))c 5 M1(H ), then ^c.x8M1(F)c& # ^c.Hc&, so that, in any case,
^c.x8M1(F)c& # ^c.Hc&. n

If, for the sake of simplicity, we identify any Hilbertian effect [F ]S P
^(*) (as equivalence class of physically indistinguishable homogeneous
effect operators) with any of its representative operators F P Q(*), then the
Brouwerian complement turns out to be F, 5 (F 8)n 5 xM1(F8) 5 xM0(F), from
which we have that F,, 5 xM0(F)

c. Thus, the set of all Hilbertian B-sharp
effects %(*) 5 {F P Q(*): F 5 F,,} coincides with the collection of all
homogeneous effects defined by (3.7):

%(*) 5 {xM: M P ((*)} (3.8)
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3.3. The Unsharp BZMV Classical Logic of Homogeneous Effects in
the Hilbert Space Model

For every (linear or homogeneous) effect operator F P Q(*), construct
the fuzzy set on the universe *8, called the probability distribution of F, as
the map wF: *8 ° [0, 1] defined by the law

∀c P *8, wF(c) :5
^c.Fc&

|c|2 (3.9)

which is a homogeneous function of degree zero, that is, wF(ac) 5 wF(c)
for all a P C and all c P *8. Denote by U the collection of all functions
(fuzzy sets on *8) w: *8 → [0, 1] which are homogeneous of degree zero.

With every effect operator F P Q(*) it is possible to associate the
nonlinear (homogeneous, nonadditive) ‘representative’ F(nl): * ° *
defined as

F (nl)(c) :5 HwF(c)c c Þ 0
0 otherwise

(3.10)

Trivially, the two effect operators F and F(nl) are physically indistinguishable:
∀F P Q(*), F[S F(nl), i.e., they generate the same effect. If F1, F2 P
Q(*) are physically indistinguishable, then they generate the same nonlinear
representative F (nl)

1 5 F (nl)
2 . Therefore, for every effect f P ^, we will refer

to the operator F(nl), with F P f, as the canonical representative of f.

Example 3.5. Referring to the linear effect operators (2.8) and (2.10) of
Example 2.1, we have the following two nonlinear representatives,
respectively:

F (nl)
NM(cr , cv) 5 5

.cr.2 1 (1/2).cv.2

.cr.2 1 .cv.2 (cr , cv) if (cr , cv) Þ 0

(0, 0) if cr 5 cv 5 0
(3.11)

(Fv
NM)(nl)(cr , cv) 5 5

.cr.2

.cr.2 1 .cv.2 (cr , cv) if (cr , cv) Þ 0

(0, 0) if cr 5 cv 5 0
(3.12)

The homogeneous effect operator (3.11) is also the representative of (3.3),
Example 3.3. The homogeneous effect operator (3.4), Example 3.4, is repre-
sented by

F (nl)
GP (cr , cv) 5 5

.cr.2 1 (1/2).cv.2

.cr.2 1 .cv.2 (cr , cv) if cr Þ 0

(0, 0) if cr 5 0
(3.13)

Note that FNM(0, 1) 5 F̂NM(0, 1) 5 F (nl)
NM(0, 1) 5 (0, 1/2), whereas
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FGP(0, 1) 5 F (nl)
GP(0, 1) 5 (0, 0); moreover, the linear effect fNM generated by

the physically indistinguishable effect operators FNM , F̂NM , F (nl)
NM is different

from the nonlinear effect fGP generated by the physically indistinguishable,
purely homogeneous effect operators FGP, F (nl)

GP [indeed, ^(0, 1).FNM(0, 1)& 5
1/2 and ^(0, 1).FGP(0, 1)& 5 0].

But also if (F v
NM)(nl)(0, 1) 5 (0,0), we have that (F v

NM)(nl)(1, 1) 5 (1/2,
1/2) and FGP(1, 1) 5 (3/2, 0); in particular, the linear effect f v

NM generated
by the physically indistinguishable effect operators F v

NM, (F v
NM)(nl) is different

from the effects fNM and fGP [indeed, ^(1, 1).(F v
NM)(nl)(1, 1)& 5 1 and ^(1,

1)|FGP(1, 1)& 5 ^(1, 1).FNM(1, 1)& 5 3/2].

Definition 3.1. We will say that an effect f P ^(*) is a homogeneous
projector iff its canonical representative is idempotent, i.e., iff (F(nl))2 5 F(nl)

(equivalently, iff w2
F 5 wF) for arbitrary F P f. The collection of all homoge-

neous projectors will be denoted by %(*).
In this nonlinear extension of unsharp quantum mechanics, the idempo-

tency of a homogeneous effect operator does not guarantee that the associated
effect is a projector.

Example 3.6. The homogeneous effect operator FGP (3.4) of Example
3.4 is idempotent, but the canonical representative F (nl)

GP , (3.13), is not idempo-
tent [F (nl)

GP (1, 1) 5 3/4(1, 1) and (F (nl)
GP)2 (1, 1) 5 (3/4)2 (1, 1)]. Therefore, the

effect fGP is not a projector.
But there is more: homogeneous projectors are characterized by (3.7),

as shown in the following.

Proposition 3.3. An effect f 5 [F ]s P ^(*) is a homogeneous projector
iff its canonical nonlinear representative F(nl) [see (3.10)] is equal to xM1(F).

Proof. Sufficiency is obvious, so we prove only necessity. Let w2
F 5

wF; then

1^c.Fc&
|c|2 2

2

5
^c.Fc&

|c|2 ⇒ ^c.Fc&
|c|2 5 0 or 1

But ^c.Fc& 5 |c|2 if and only if c P M1(F ), and ^c.Fc& 5 0 if and only
if c P M0(F ). Therefore, ^c.Fc& 5 ^c.xM1(F) c& for all c P *, from which
we get that for every c P *

F (nl)(c) 5 5
^c.Fc&

|c|2 c if c Þ 0

0 otherwise
5 5

^c.xM1(F)c&

|c|2 c if c Þ 0

0 otherwise

from which [by (3.7)] the equality F(nl) 5 xM1(F) follows. n
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Since for every fuzzy set wF: *8 → [0, 1] from Q, the above (3.10)
defines a homogeneous effect operator, from what we have said up to now
there clearly is a bijective correspondence between the set ^(*) of all
homogeneous effects and the set Q of all fuzzy sets on *8, according to
which every effect f P ^(*) can be identified with wf P Q, where wf is the
fuzzy set wF with F arbitrarily chosen in f :

f P ^(*) } wf :5 wF P Q, with F P f (3.14)

Note that Q has the natural structure of a classical BZMV algebra (Q, %, 8,
,, J0⁄ , J*8) of de Morgan type (for a definition see refs. 6 and 8) with respect
to the pointwise operation of truncated sum ∀c P *8, (wf % wg)(c) :5
min{1, wf(c) 1 wg(c)}, the Kleene complement w8f (c) :5 1 2 wf(c), the
Brouwer complement w,

f (c) :5 JM0(f)(c) [the characteristic functional of
M0( f ), equal to 1 for c P M0( f ), and 0 otherwise]. Here, J0⁄ (resp., J*8) is
the 0 (resp., 1) map on *8, corresponding to the zero (resp., unit) element
of the BZMV structure.

BZMV algebras are models of classical Lukasiewicz many-valued logics,
with applications to standard fuzzy set theory [8]. Since the structure of a
classical BZMV algebra can be translated to an analogous classical structure
associated with ^(*), we can conclude that the “logic” of nonlinear effects
of the proposed Hilbert space model is the classical one of a BZMV algebra.

Through a slight modification of results proved in ref. 8 we will now
show that the sharp part of the BZMV algebra Q is the (classical) Boolean
algebra of all characteristic functionals JM , with M ranging over the set of
starred subsets. In other words, the sharp part of Q is identifiable with the
collection of all starred subsets ((*).

3.4. The Classical Boolean Logic of Propositions in the Hilbert
Homogeneous Model of the State–Effect–Probability
Structure

Now consider the equivalence relation on Q(*) defined by

F1 [p F2 ⇔def M1(F1) 5 M1(F2)

According to the general theory, if F P Q(*), we denote by [F ](p) the
proposition (equivalence class) generated by F and by %(p)(*) :5 ^(*)/,
the corresponding quotient set. To every proposition a P %(p)(*) we can
associate the certainly-yes domain M1(a) defined by the common certainly-
yes domain M1(F ), for any arbitrary F P a.

The following proposition holds.
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Proposition 3.4. For every proposition a P %(p)(*) the event (B-sharp
effect) associated with a according to (SEP-7p) of Section 1.3 is the homoge-
neous projection xM1(a).

Analogously, the equivalence relation (1.7) defining nopositions can be
formulated in the following way:

F1 [n F2 ⇔def M0(F1) 5 M0(F2)

and the following result can be proved.

Proposition 3.5. For every noposition â P %(n)(*) the event (B-sharp
effect) associated with â is the homogeneous projection xM0(â).

Proof. Immediate from the previous proposition and proposition 1.1. n

As pointed out at the end of Section 1.3, we have that %(p)(*) 5 %(n)(*),
and according to (1.6), %(p)(*) can be identified with the set %(*) of all
homogeneous projectors. From (3.8) we deduce that the collection of all
starred subsets ((*) is identifiable with %(*) through the bijection

x: ((*) ° %(*), M → xM (3.15)

We now show how ((*) and %(*) can be identified from the point of
view of their algebraic structure. We begin with the logic of starred subsets
(((*), #, c, 0⁄ ), where # is the usual set-theoretic inclusion and c the set-
theoretic complement. Assuming conventionally that the empty set is the null
one-dimensional subspace, ((*) is a complete lattice since both the set-
theoretic union and intersection of any family of starred subsets are starred
subsets. Trivially, these two lattice operations of union and intersection are
distributive. Finally, the map which associates with a starred subset its set-
theoretic complement (which is a starred subset, too) is a standard orthocom-
plementation. Hence, ((*) is a Boolean (complete) lattice, i.e., a classic logic.

The structure of a classical logic that is associated with ((*) translates,
then, to an analogous classical logic structure associated with %(*) by the
bijection (3.15), so that the Boolean lattice (((*), #, c, 0⁄ , *) is isomorphic
to the Boolean lattice (%(*), #, 8, O, I).

Summarizing, the logic of measurable properties on the system is a
classical logic isomorphic to the logic of starred subsets. For every property
M there exists a precise yes–no apparatus described by the nonlinear operator
xM through which M is measured. Other elements of [xM](p) are experimental
apparata which measure in a ‘fuzzy’ way the same property associated
with xM.

Note, in conclusion, the following simple proposition:

Proposition 3.6. If there exists a linear projection E P P(*) in the
proposition a, P %(*), then xM1(a) , E.



Nonlinear Classical Extension of QM 639

Proof. Straightforward from the fact that ∀x P Sp(a), P(x, xSp(a)) 5
P(x, E ) 5 1 and ∀X ¸ Sp(a), P(x, xSp(a)) 5 0. But there must exist at least
one x ¸ Sp(a) such that P(x, E ) . 0. n

4. CONCLUSIONS

This paper has shown how the nonlinear extension of quantum mechanics
can be constructed as a triple (S(*), ^(*), P), a state–effect–probability
structure.

It has also shown that the set of all nonlinear effects ^(*) has the
algebraic structure of a BZMV-algebra, and therefore its logic is a classical
fuzzy logic (Łukasiewicz many-valued logic). It (but not its sharp part)
contains as a proper subset the set of standard quantum mechanical linear
effects and projectors (linear propositions). The sharp part of ^(*) has the
structure of a Boolean algebra, and therefore its logic is a classical logic.

It is possible to say quite a bit more about this structure. We can prove
that it is, in a precise sense, a classical extension of linear quantum mechanics:
in fact, it is the canonical classical extension that Beltrametti and Bugajski
defined and studied [1]. We will prove these results in a further paper.
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